50 Years of Catalysis

1st DECADE: 1949 — 1958

  • Late 1940s to Early 1950s — Robert M. Mil­ton and Don­ald W. Breck, Union Car­bide, develop com­mer­cial syn­the­sis for zeo­lites — A, X, and Y types.
  • Late 1940s — Eugene Houdry devel­ops mono­lithic plat­inum cat­a­lyst sys­tem for
  • Early 1950s — Treat­ing exhaust gases from inter­nal com­bus­tion engines, founds — and begins com­mer­cial oper­a­tions at Yard­ley, Penn­syl­va­nia. Houdry is later inducted into the Inventor’s Hall of Fame.
  • June 11, 1949 — First meet­ing of orga­ni­za­tion that became the Catal­y­sis Club of Philadel­phia was held at the Uni­ver­sity of Penn­syl­va­nia. Paper were pre­sented by R. C. Hans­ford (Mobil), A. G. Oblad (Houdry), A. V. Grosse (Tem­ple U), T. I. Tay­lor (Colum­bia U.) and K. A. Krieger (U. Penn­syl­va­nia). A. Farkas, orga­nizer of this sym­po­sium, was selected chair­man of a com­mit­tee to form a per­ma­nent organization.
  • Decem­ber 1949 — Prof. Paul Emmett pre­sented a lec­ture at Tem­ple Uni­ver­sity and after­wards the Catal­y­sis Club of Philadel­phia was offi­cially formed, elect­ing A. Farkas chair­man and A. Oblad as Secretary-Treasurer. Almost one hun­dred signed up as members.
  • 1949 — First com­mer­cial oper­a­tion of UOP’s Plat­form­ing Process for naph­tha reform­ing, Old Dutch Refin­ing, Muskegon, Michi­gan; patents for Pt-Cl-Al2O2 cat­a­lysts to Vladimir Haensel.
  • 1949 — P. W. Sel­wood pub­lished his first paper on nuclear induc­tion and begins a series of clas­sic pub­li­ca­tions on the appli­ca­tion of mag­netic tech­niques in catal­y­sis. The results are sum­ma­rized in his book [P. W. Sel­wood, “Adsorp­tion and Col­lec­tive Para­mag­net­ism,” Aca­d­e­mic Press, 1962.]
  • March 2, 1950 — The Bylaws of the Catal­y­sis Club of Philadel­phia, as writ­ten by Grace Kennedy (wife of Robert Kennedy, promi­nent catal­y­sis sci­en­tist at Sun Oil), were adopted and still serve as the model for later formed clubs/societies.
  • 1950 — MILESTONE MEETING: The Dis­cus­sions of the Fara­day Soci­ety, Het­ero­ge­neous Catal­y­sis, No. 8, 1950. Top­ics included:
    • O. Beeck, Relates % d-character of metal and cat­alytic activ­ity for eth­yl­ene hydrogenation.
    • D. D. Eley, Cal­cu­lates the heat of adsorp­tion of hydro­gen on metals.
    • G. M. Schwab, Alloy cat­a­lysts for dehydrogenation.
    • D. D. Dow­den and P. W. Reynolds, Elec­tronic effects in catal­y­sis by metal alloys.
    • P. W. Sel­wood and L. Lyon, Mag­netic sus­cep­ti­bil­ity and cat­a­lyst structure.
    • M. W. Tamele, Sur­face chem­istry and cat­alytic activ­ity of silica-alumina catalysts.
  • John Turke­vich, H. H. Hubbell and James Hillier, Elec­tron microscopy and small angle X-ray scattering.
  • 1950 — Lin­ear rela­tion­ship between quino­line chemisorp­tion and cat­alytic activ­ity for gasoil crack­ing — G. A. Mills, E. R. Boedeker and A. G. Oblad, JACS, 72, 1554 (1950).
  • 1950 — Hydro­formy­la­tion cat­alytic species iden­ti­fied as HCo(CO)4 — I. Wen­der, M. Orchin and H. H. Storch, JACS, 72, 4842 (1950).
  • 1951 — A. Wheeler defines role of dif­fu­sion in deter­min­ing reac­tion rates and cat­alytic selec­tiv­ity — Advan. Catal., 3, 250–326 (1951).
  • 1951 — Paul Emmett uti­lizes 14C radioiso­tope in Fischer-Tropsch mech­a­nism stud­ies — New York Times reports that “Gulf Oil sci­en­tist makes radioac­tive gasoline.”
  • 1953 — Naph­tha reform­ing involves dual func­tional cat­a­lysts — mech­a­nism for reform­ing with these cat­a­lysts — G. A. Mills, H. Heine­mann, T. H. Mil­liken and A. G. Oblad, Ind. Eng. Chem., 45, 124 (1953).
  • 1953 — Karl Ziegler dis­cov­ers a cat­a­lyst sys­tem for poly­mer­iz­ing eth­yl­ene at low tem­per­a­ture and pres­sure to pro­duce lin­ear, crys­talline poly­eth­yl­ene– Nobel Prize awarded to Ziegler in 1963.
  • 1954 — Gue­lio Natta invents stere­ospe­cific poly­mer­iza­tion of propy­lene to pro­duce crys­talline polypropy­lene– Nobel Prize awarded to Natta in 1963.
  • 1954 — “Begin­ning” of cat­a­lyst char­ac­ter­i­za­tions using instru­ments with i.r. spec­tra for CO adsorp­tion on cop­per (R. P. Eis­chens, W. A. Pliskin and S. A. Fran­cis, J. Chem. Phys., 22, 1786 (1954)). This pio­neer­ing work soon included approaches to char­ac­ter­ize active sites for adsorp­tion on metal, metal oxide and acidic sites as well as dis­tin­guish­ing Brøn­sted and Lewis acid sites.
  • 1954 — John P. Hogan and R. L. Banks, Phillips Petro­leum, dis­cov­ers chro­mia cat­a­lyst for poly­eth­yl­ene production.
  • 1954 — B.F. Goodrich (S. E. Horne) and Gulf Oil announce use of Ziegler cat­a­lyst to poly­mer­ize iso­prene to dupli­cate nat­ural rubber.
  • 1955 — Sasol begins com­mer­cial oper­a­tion of Fischer-Tropsch cir­cu­lat­ing fluid bed reactors.
  • 1956 — Phillips Process — high pres­sure (500 psi) in hot sol­vent with sup­ported chro­mia cat­a­lyst did not, on the sur­face, look attrac­tive com­pared to Ziegler-Natta; how­ever, engi­neer­ing advances, cheap and high activ­ity cat­a­lyst, and ever increas­ing scale made the Phillips Process the world’s lead­ing source of polyethylene.
  • 1956 — First Inter­na­tional Con­gress on Catal­y­sis held in Philadel­phia — more than 600 atten­dees. Orga­niz­ing the Inter­na­tional Con­gress on catal­y­sis was con­ceived by the Catal­y­sis Club of Philadel­phia and received endorse­ment from the Catal­y­sis Club of Chicago, the Uni­ver­sity of Penn­syl­va­nia, and the National Sci­ence Foun­da­tion. [At the end of the acknowl­edg­ments it is noted the the orga­ni­za­tion of the Con­gress was planned by RL Bur­well, Jr, A Farkas, AV Grosse, H Heine­man, WR Kirner, KA Krieger, JM Mav­ity, AG Oblad and CL Thomas. The orga­niz­ers included peo­ple from Chicago.]
  • 1957 — On June 18, Her­cules opens the first Zigler cat­a­lyst based plant in the U.S.
  • 1958 — Merox Mer­cap­tan Oxi­da­tion Process _ UOP.
  • 1953 to 1959 — Patents granted in these years led to the com­mer­cial pro­duc­tion of three sig­nif­i­cant lin­ear poly­olefins: high-density poly­eth­yl­ene (1955– 56 by Hoechst, W.R. Grace, Her­cules and Phillips), polypropy­lene (1957–8 by Her­cules, Mon­te­can­tini and Hoechst) and stereo-specific rub­bers (1958–9 by Goodrich-Gulf, Phillips and Shell).

 

2nd DECADE: 1959 — 1968

  • 1960’s — Major advances in het­ero­ge­neous photocatalysis
  • 1960’s — Cat­alytic advances to allow low-temperature water-gas shift
  • 1960s — Sci­en­tific Design devel­oped processes to make chlo­ri­nated sol­vents and maleic anhy­dride. A major break­through was the devel­op­ment of a cat­a­lyst to oxi­dize p-xylene into puri­fied ter­phthalic acid.
  • 1960s — Devel­op­ment of the con­cepts of demand­ing and facile metal cat­alyzed reac­tions — intro­duced by Boudart and cowork­ers. M. Boudart, Adv. Catal., 20, 153 (1969)
  • 1959 — Obser­va­tion of olefin metathe­sis at Phillips Petro­leum — R. L. Banks and G. C. Bai­ley, Ind. Eng. Chem. Prod. Res. Dev., 3, 170 (1964); R. L. Banks, “Dis­cov­ery and Devel­op­ment of Olefin Dis­pro­por­tion­a­tion (Metathe­sis)” in “Het­ero­ge­neous Catal­y­sis: Selected Amer­i­can His­to­ries,” (B. H. Davis and W. P. Het­tinger, Jr., Eds.), ACS Symp. Series, 222, 403 (1983)).
  • 1959 — Dabco (trimeth­yl­ene diamine) was intro­duced by Houdry Corp. as a cat­a­lyst for the pro­duc­tion of ure­thane foams from iso­cyanates and alcohols.
  • 1959 — Nalco intro­duces 1/16″, and later 1/32,” extru­date CoMo– alu­mina hydrotreat­ing cat­a­lysts and intro­duced in Exxon Bay­town refinery.
  • 1960 — Eth­yl­ene to acetalde­hyde — Wacker Chemistry
  • 1960 — UOP intro­duces Hydrar Process for con­vert­ing ben­zene to cyclohexene.
  • 1960 — Com­ple­tion of Sohio’s acry­loni­trile plant at Lima, Ohio, based upon cat­a­lyst dis­cov­ered by J. D. Idol.
  • 1961 — Par­ing reac­tion in hydro­c­rack­ing, R. F. Sul­li­van, C. J. Egan, G. E. Lan­glois and R. P. Sieg, JACS, 83, 1156 (1961).
  • 1962 — Steam reform­ing with NiK2Al2O3
  • 1962 — Obser­va­tion of reversible bind­ing of H2 and C2H4 by Vaska’s Com­plex, IrCl(CO)(PPh3)2, L. Vaska and J.W. DiLuzio, JACS, 84, 679 (1962).
  • 1962 — Jour­nal of Catal­y­sis, the first sci­en­tific jour­nal devoted solely to catal­y­sis, begins pub­li­ca­tion with J. H. de Boer and P. W. Sel­wood as editors.
  • 1962 — Descrip­tion of “Vaska’s Com­plex,” the first to show reversible bond­ing of hydro­gen and ethene within the coor­di­na­tion sphere (L. Vaska and J. W. D. Luzio, JACS, 84, 679 (1962)).
  • 1963 — Sachtler proves, using 14C-labeled propene, that a p-allyl com­plex is formed dur­ing propene oxi­da­tion (W. M. H. Sachtler, Rec. Trav. Chim., 82, 243 (1963)).
  • 1963 — Ammox­i­da­tion of propene to acrylonitrile.
  • 1963 — The­o­ret­i­cal model for describ­ing ele­men­tary redox reac­tions for elec­trodes (R. A. Mar­cus, J. Phys. Chem., 43, 679 (1963)).
  • 1964 — Intro­duc­tion of rare earth metal sta­bi­lized X-zeolite for cat­alytic crack­ing by Mobil Oil — C. J. Plank, E. J. Rosin­ski and W. P. Hawthoren, 3, 165, (1964). Plank and Rosin­ski in the Inven­tors Hall of Fame.
  • 1964 — Olah announces “Magic Acid,” a mix­ture of HF and SbF5 reacts with hydro­car­bons to pro­duce sta­ble car­bo­ca­tions that are observ­able using NMR. G. Olah awarded the 1994 Nobel Prize in Chemistry.
  • 1964 — Olefin metathe­sis announced [R. L. Banks and G. C. Bai­ley, Ind. Eng. Chem, Prod Res. Dev., 3 170 (1964)] com­mer­cial­ized in 1966.
  • 1964 — Mech­a­nism for hydro­c­rack­ing — H. L. Coon­radt and W. E. Gar­wood, Ind. Eng. Chem., Process Design Dev., 3, 38 (1964).
  • 1964 — K. Tamaru sum­ma­rizes tran­sient cat­alytic stud­ies empha­siz­ing IR tech­niques (Adv. Catal., 15, 65 (1964)).
  • 1964 — Spillover of Hydro­gen from Pt/Al2O3 to WO3 (S. Khoobiar, J. Phys. Chem., 68, 411 (1964)).
  • 1964 — Bly­holder (J. Phys. Chem., 68, 2772 (1964)) sug­gested that CO adsorp­tion on tran­si­tion met­als can be described by a mol­e­c­u­lar orbital pic­ture of two con­tri­bu­tions to bond­ing, par­tial dona­tion of CO-5s charge to metal ds orbitals and back dona­tion from metal dp to CO 2p* anti­bond­ing orbitals.
  • 1964 — Startup by Mon­santo of the world’s first biodegrad­able deter­gents plant based upon C10-C14 lin­ear olefins obtained by selec­tive cat­alytic dehy­dro­gena­tion of n-paraffins.
  • 1965 — Wilkinson’s homo­ge­neous hydro­gena­tion cat­a­lyst, J.F. Young, J.A. Osborn, F.H. Jar­dine and G. Wilkin­son, Chem. Com­mun., (1965) 131. G. Wilkin­son is the 1973 Nobel Lau­re­ate in Chemistry.
  • 1966 — ICI devel­oped a moderate-pressure, low-temperature methanol syn­the­sis process employ­ing a Cu-ZnO/Al2O3 cat­a­lyst in a gas-recycle reactor.
  • 1966 — Intro­duc­tion of con­cept of hard and soft acids and bases to catal­y­sis (R. G. Pear­son, Sci­ence, 151, 172 (1966)).
  • 1966 — Devel­op­ment of a method to cal­cu­late the coor­di­na­tion num­bers of sur­face atoms in the sta­ble forms of small metal par­ti­cles (R. van Hard­e­veld and A. van Mont­foort, Sur­face Sci., 4, 396 (1966)).
  • 1967 — Intro­duc­tion of first bimetal­lic naph­tha reform­ing cat­a­lyst — Pt-Re-Al2O3 — need for pre­sul­fi­da­tion of a naph­tha reform­ing catalyst.
  • 1967 — Catal­y­sis Reviews begins pub­li­ca­tion with H. Heine­mann as editor.
  • 1967 — Atlantic Rich­field and Hal­con (for­merly Sci­en­tific Design) formed a joint ven­ture, Oxi­rane, to pro­duce styrene, propy­lene oxide and tert-butyl alcohol.
  • 1967 — Sum­maries of Lin­ear Free Energy Rela­tion­ships (LFER) in Het­ero­ge­neous Catal­y­sis (M. Kraus, Adv. Catal., 17, 75 (1967); I. Mochida and Y. Yoneda, J. Catal., 7, 386 (1967)).
  • 1968 — Shape selec­tive catal­y­sis — Selecto­form­ing with erionite.

 

3rd DECADE: 1979 — 1988

  • 1970’s — Rh-catalyzed hydro­formy­la­tion of propene.
  • 1970’s — Improved selec­tiv­ity for oxi­da­tion of ethene to eth­yl­ene oxide using Cs (or Cl) pro­moted Ag catalysts.
  • 1970’s — Intro­duc­tion of use of con­trolled atmos­pheric trans­mis­sion elec­tron microscopy for cat­a­lyst char­ac­ter­i­za­tion and kinet­ics of catalysis.
  • 1972 — Exten­sive stud­ies of metal alloy cat­a­lysts by Sin­felt and cowork­ers results in demon­stra­tion of dif­fer­ent activ­ity pat­terns as alloy com­po­si­tion changes for the hydrogenol­y­sis of ethane to methane and dehy­dro­gena­tion of cyclo­hexane to ben­zene (J. H. Sin­felt, J. L. Carter and D. J. C. Yates, J. Catal., 24, 283 (1972)).
  • 1974 to 1975 — UOP Purzaust Auto Exhaust Treat­ment sys­tem accepted by Chrysler and is installed on 1975 models.
  • 1974 — F. Sher­wood Roland and M. Molina dis­cover chlorine-catalyzed ozone deple­tion in the atmosphere.
  • 1975 — B. Del­mon orga­nizes the first meet­ing for the Sci­en­tific Basis for the Prepa­ra­tion of Het­erog­neous Catalysts.
  • 1975 — State of dis­per­sion of small Pt and Pd metal par­ti­cles in zeo­lites (P. Gal­leyot et. al., J.Catal., 39, 334 (1975)).
  • 1975 — Demon­stra­tion that poi­sons of metal­lic cat­a­lysts are selec­tive, decreas­ing rates of structure-sensitive and structure-insensitive reac­tions dif­fer­ently (R. Mau­rel, G. Leclercq and J. Bar­bier, J. Catal., 37, 324 (1975)).
  • 1976 — Mobil Oil man­age­ment announces the dis­cov­ery of methanol-to-gasoline con­ver­sion using their ZSM-5 zeo­lite cat­a­lyst (Chemtech, 6, 86–9 (1976)).
  • 1978 — Dis­cov­ery of the strong metal sup­port inter­ac­tion (SMSI) and its role in alter­ing the adsorp­tive prop­er­ties of the metal func­tion. (S. J. Tauster, S. C. Fung and R. L. Garten, JACS, 100, 170 (1978)).
  • 1979 — Ten­nessee East­man selects rhodium as cat­a­lyst for pro­duc­ing acetic anhy­dride from coal.

 

4th DECADE: 1979 — 1988

  • 1980’s — Intro­duc­tion of SCR (Selec­tive Cat­alytic Reduc­tion) for NOx con­trol on sta­tion­ary power generators.
  • 1980’s — New cat­alytic tech­nol­ogy com­mer­cial­ized in the U.S. dur­ing the 1980’s (J. Armor, Appl. Catal., 78, 141 (1991)).
  • 1980’s — Union Car­bide and Shell develop the UNIPOL process for lin­ear low-density poly­eth­yl­ene, which allows pre­cise con­trol over the product’s mate­r­ial prop­er­ties. The process was extended to polypropy­lene in 1985.
  • 1980’s — Demon­stra­tion that strongly elec­troneg­a­tive ele­ments rel­a­tive to nickel mod­ify chemisorp­tive behav­ior far more strongly than a sim­ple site– block­ing mech­a­nism would allow, sup­port­ing an elec­tronic effect (D. W. Good­man, “Chem. Phys. Solid Surf.,” Springer-Verlag, 1986, pp. 169–195.
  • 1980’s — Exper­i­men­tal evi­dence demon­strat­ing the restruc­tur­ing of sur­faces dur­ing cat­alytic reac­tions — e.g., the con­ver­sion of eth­yl­ene to eth­yli­dyne with expan­sion of the metal atoms around the car­bon atom (R.J. Koest­ner, M. A. Van Hove and G. A. Somor­jai, Surf. Sci., 121, 321 (1982) and show­ing the par­al­lel restruc­tur­ing of Pt and oscil­la­tion in CO oxi­da­tion (G. Ertl, Ber. Buns. Phys. Chem., 90, 284 (1986)).
  • 1980 — Very rapid ethene poly­mer­iza­tion by homo­ge­neous cat­a­lyst (CP2 Zr (CH3)2 acti­vated with cocat­a­lyst alu­mi­nox­ane) (H Sinn et. al., Angew. Chem., 92, 396 (1980)).
  • 1981 — Applied Catal­y­sis begins pub­li­ca­tion with B. Del­mon as Editor-in-Chief.
  • 1981 — Adsor­bate induced restruc­tur­ing of sur­face (M.A. van Hore et.al., Surf. Sci., 103, 190, 218 (1981)).
  • 1981 — Intro­duc­tion of con­straint index as a diag­nos­tic test for shape selec­tiv­ity using crack­ing rate con­stants for n-hexane and 3-methylpentane (V. J. Frilette, W. O. Haag and R. M. Lago, J. Catal., 67, 218 (1981)).
  • 1982 — Def­i­n­i­tion of Energy Pro­file for Ammo­nia Syn­the­sis (G. Ertl in “Solid State and Mate­r­ial Sci.”, CRC Press, 1982, 349).
  • 1982 — The first of a series of sil­i­caa­lu­minophos­phate mol­e­c­u­lar sieves pre­pared by Union Car­bide (now part of UOP).
  • 1982 — The con­cept of tran­si­tion state selec­tiv­ity for zeo­lite catal­y­sis intro­duced (W. O. Haag, R. M. Lago and P. B. Weisz, J. Chem. Soc., Farad. Disc., 72, 317 (1982)).
  • 1983 — Ash­land Petro­leum intro­duces RCC (Reduced Crude Crack­ing) with 40,000 blb/day plant.
  • 1983 — Enichen sci­en­tists report the use of tita­nium sil­i­calite (TS-1) as a cat­a­lyst for selec­tive oxi­da­tions with aque­ous hydro­gen per­ox­ide, includ­ing olefin epox­i­da­tion (M. Tara­masso, G. Pereyo and B. Natari, U.S. 4,410,501).

 

5th DECADE: 1989 — 1999

  • 1990’s — Fischer-Tropsch as a source of alpha-olefins.
  • 1990’s — Com­bi­na­to­r­ial approaches to cat­a­lyst screen­ing and new cat­a­lyst dis­cov­ery (e.g., K. D. Shimizu et al., Chem. Eur. J., 4, 1885 (1998)).
  • 1990’s — Selec­tive oxi­da­tion of ben­zene to phe­nol using (Fe) ZSM-5 catalyst.
  • 1992 — Com­mer­cial use of non-iron cat­a­lyst for ammo­nia synthesis.
  • 1992 — Syn­the­sis of MCM-41, the first uni­formly struc­tured meso­porous alu­mi­nosil­i­cate, announced by Mobil Oil (J. S. Beck, et al., JACS, 114, 10834 (1992).
  • 1994 — Top­ics in Catal­y­sis begins pub­li­ca­tion with Gabor Somor­jai and Sir John Thomas as Co-Editors.
  • 1995 — Intro­duc­tion of oxone cat­alytic con­verter for air­plane air purification.
  • 1996 — Cat­alytic con­verter selected by Fel­lows of the Soci­ety of Auto­mo­tive Engi­neers as one of the top ten achieve­ments in the auto indus­try dur­ing the past 100 years.
  • 1996 — Global Overview of Catal­y­sis — A Series of Reports for many coun­tries begins to appear in Applied Catal­y­sis A: General.
  • 1996 — MagnaCat Process for sep­a­ra­tion and remov­ing aged FCC cat­a­lyst oper­ates at a com­mer­cial scale.
  • 1996 — Mem­bers of orig­i­nal acry­loni­trile research team (l to r; J. L. Calla­han, G. C. Cross, E. C. Mil­berger, E. C. Hughes and J. D. Idol (F. Veatch, deceased)) at ded­i­ca­tion of plant site as National His­tor­i­cal Land­mark by the ACS.
  • 1999 — UOP Cyclar Process for the pro­duc­tion of aro­mat­ics for LPG.

 
Con­tributed by Burt Davis
Uni­ver­sity of Ken­tucky Cen­ter for Applied Energy Research
2540 Research Park Drive, Lex­ing­ton, KY 40511–8410
For more details and PDF files go to http://crtc.caer.uky.edu/history.htm.