I am pleased to announce that Professor Manos Mavrikakis has been selected for the 2009 Paul H. Emmett Award in Fundamental Catalysis. The award consists of a plaque and a prize. The purpose of the Award is to recognize and encourage individual contributions (under the age of 46) in the field of catalysis with emphasis on discovery and understanding of catalytic phenomena, proposal of catalytic reaction mechanisms and identification of and description of catalytic sites and species.
Since 1999 Manos has been with the Department of Chemical & Biological Engineering, University of Wisconsin — Madison. Manos is one of the world leaders in the area of computational chemistry in catalysis. He has also served as Visiting Professor, Department of Chemical Engineering, Technical University of Denmark, Lyngby, Denmark. The primary research focus of Manos’ group is the fundamental understanding of surface reactivity, using state-of-the-art first-principles methods, and extensively collaborating with experimental experts. Manos has coauthored more than 80 original publications. He is a member of the editorial board of Surface Science and of the Annual Review of Chemical & Biomolecular Engineering. Dr. Mavrikakis has pioneered the use of Density Functional Theory (DFT) methods in the screening of pure and alloy metal catalysts to discover which metals or alloys have potential to yield catalysts of improved activity and/or selectivity. Manos has been unique in having used theoretical methods to find new, interesting classes of systems and site-nanostructures. Key to his success here was the use of fundamental principles concerning the relationships between the energetics of certain key intermediates and the activation barriers for the rate-controlling steps to make this screening procedure faster.
In particular, Manos demonstrated that possibility by identifying bimetallic alloys which bind atomic H as weakly as the noble metals (Cu, Au), but are able to break the H‑H bond in H2 more easily than noble metals. Such Near-Surface-Alloy (NSA) materials are ideal for low temperature, highly selective, H‑transfer reactions (e.g., in pharmaceutical production), and energy related catalytic applications. Also, Manos’s group systematically studied Oxygen Reduction Reaction (ORR) on a number of late transition metals, including bimetallic and ternary alloys of Pt. The result of that work was the construction of stable, ternary NSAs, which contain much less Pt, and are up to a factor of four more active than pure Pt ORR electrocatalysts. Manos also has discovered many interesting aspects of catalytic reaction mechanisms that have inspired the field. In particular, very recently Manos’ group has proposed a novel low-temperature reaction mechanism for the preferential oxidation of CO in the presence of H2, which explains the room-temperature reactivity of Ru-Pt core-shell nanoparticles. The specific nanoparticles were identified by Manos’ group from first-principles as very active and selective PROX catalysts, and those predictions were confirmed upon synthesis and catalytic testing of the Ru-core Pt-shell nanoparticles. Manos also followed up his detailed gas-phase methanol decomposition DFT work with experiments and microkinetic modeling, to show that one can accurately predict experimental reaction rates directly from first principles. In the area of water gas shift catalysis, his efforts have led to a completely new water-gas shift reaction mechanism involving carboxyl species on Cu, Pt, and Au surfaces, which is quite general and may be applicable to other low temperature water-gas shift catalysts. Importantly, this mechanism is shown to be operational under realistic industrial water-gas shift conditions.
Manos will give a plenary lecture and be recognized at the 2009 North American Catalysis Society meeting in San Francisco.
The Paul H. Emmett Award in Fundamental Catalysis is sponsored by the Davison Chemical Division of W.R. Grace and Company. It is administered by The North American Catalysis Society and is awarded biennially in odd numbered years. More information on this award, the awards process, and previous awardees can be found inside the Awards folder on the NACS home page: www.nacatsoc.org
John Armor
Award Citation: For his elucidation of the fundamental aspects of the surface chemistry for well-established catalytic processes, and his leadership in the use of Density functional Theory to set directions for future research in the search for new catalysts and new catalytic processes.