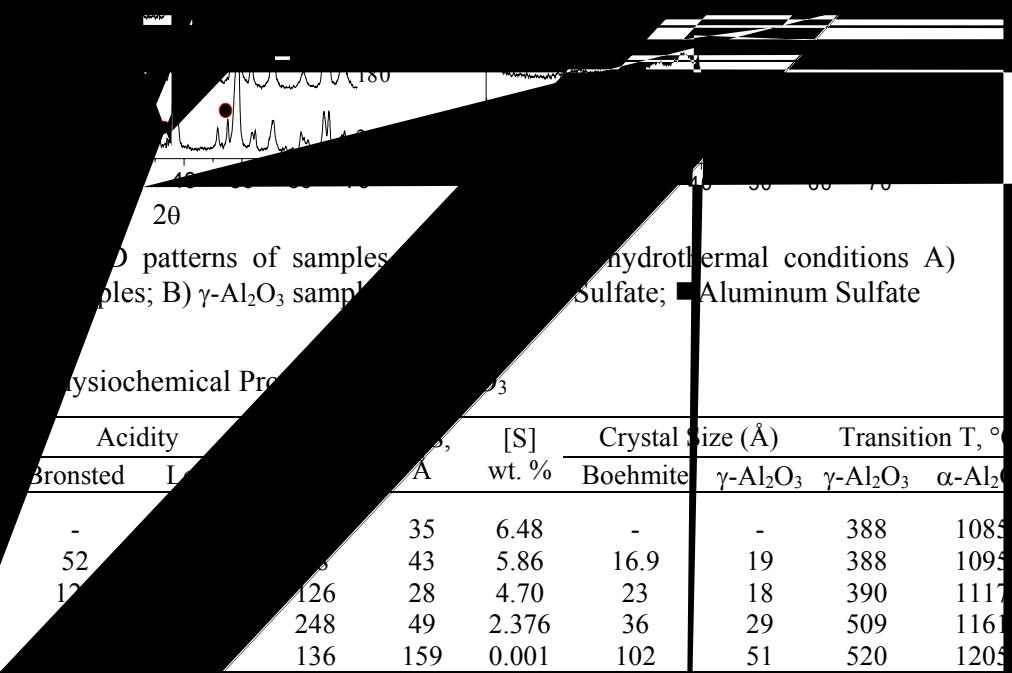


Hydrothermal Synthesis of Boehmite from Aluminum Sulfate

M.L. Guzmán-Castillo¹, F. Hernández-Beltrán¹, A. Rodriguez¹ and X. Bokhimi²

¹Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, 07730, México, D. F., ²UNAM, A:P: 20-364, 01000, México, D. F.

Introduction


Although known from long time transitional aluminas are still subjected to basic research with a specially renewed interest. Aluminas have enormous commercial importance as adsorbents and catalysts components in many chemical processes, including cracking, hydrodesulphurization and hydrocracking of oil cuts (1,2). Transitional aluminas are prepared by calcination of aluminum oxy-hydroxides. One of the forms is γ -Al₂O₃ which derives from boehmite. The properties of γ -Al₂O₃ materials are strongly related to the properties of the precursor boehmite and mainly depend on the crystal size (3,4). In this work we investigated the effect of the synthesis temperature of boehmites onto varying properties of their correspondent γ -Al₂O₃.

Results and discussion

Samples were precipitated in basic pH from solutions of aluminum sulfate under hydrothermal conditions. We investigated the effect of the synthesis temperature on the physicochemical properties of boehmites and their corresponding γ -Al₂O₃ which were obtained by calcination at 600°C. The samples were studied by XRD-Rietveld refinement, N₂ adsorption, TGA-DTA and FTIR-pyridine adsorption.

Solids with the boehmite structure of varying crystallinity was observed in all cases but aluminum sulfate was also observed in samples precipitated at lower temperatures (Figure 1). The crystallinity and crystallite size of boehmites increased monotonically with the synthesis temperature (Table 1). The surface area (S_{BET}) went through a maximum for γ -Al₂O₃ obtained from boehmite precipitated at 140°C. Compared to the rest of the samples, the average pore size increased notoriously for γ -Al₂O₃ obtained from the boehmite produced at 180°C.

TGA-DTA of boehmites showed a continuous weight loss up to completion of dehydroxylation. Transition of boehmite to γ -Al₂O₃ was observed between 380-550°C, through an endothermic change. The transition temperature to γ -Al₂O₃ and then to α -Al₂O₃ could be clearly related the crystallite size as previously observed with boehmites obtained from aluminium chloride (4). Small crystals produced γ -Al₂O₃ at lower temperature, thus showing lower stability while possessing a less ordered structure with smaller pores (5). However, the comparatively lower S_{BET} obtained from boehmites precipitated at lower temperature is not fully consistent with their small crystal size. Differences could be explained to the presence of some sulfate impurities that remained in γ -Al₂O₃ after calcination. The chemical analysis showed higher sulfur content in γ -Al₂O₃ from boehmites with smaller crystallite size. Therefore, synthesis at lower temperatures seemed to produce sulfate impurities that partially blocked pores in γ -Al₂O₃.

1. Industrial Alumina chemicals, ACS Monograph 184, Wash., DC, 1986,
 2. S. A. Ratnasamy, P., Catal. Rev. Sci. eng. 1978, 17, 31.
 3. X. Bokhimi, J.A. Toledo, M.L. Guzmán-Castillo, and F. Hernández-Beltrán, J. Solid State Chem 161, 319-326 (2001)
 4. X. Bokhimi, J.A. Toledo, M.L. Guzmán-Castillo, B. Mar-Mar, F. Hernández-Beltrán and J. Gavarrete, J. Solid State Chem 161, 319-326 (2001)
 5. M.L. Guzmán Castillo, X. Bokhimi, A. Toledo, J. Salmones and F. Hernández- Beltrán, J. Phys. Chem. B., 105, 3099-2106 (2001)