Message of Sympathy from President of IACS

Dear Pres­i­dent,
 
On behalf of the entire catal­y­sis com­mu­ni­ty, I would like to express our sin­cere com­pas­sion to our Amer­i­can col­leagues and to the peo­ple of the Unit­ed States. We are sad­dened and shocked by the numer­ous deaths and the suf­fer­ing due to the trag­ic events which have struck your coun­try. More than ever before, it is nec­es­sary to con­ju­gate our efforts through edu­ca­tion, col­lab­o­ra­tion and friend­ship to con­struct a bet­ter world and pre­vent this type of tragedy.

With warm per­son­al regards, Sin­cere­ly Yours,
 
Tres cor­diale­ment,
 
Michel Che
Boris Ime­lik Pro­fes­sor of Sur­face Reac­tiv­i­ty and Catal­y­sis
Insti­tut Uni­ver­si­taire de France
Pres­i­dent of the Inter­na­tion­al Asso­ci­a­tion of Catal­y­sis Soci­eties (IACS)

Manos Mavrikakis selected for the 2009 Paul H. Emmett Award in Fundamental Catalysis

I am pleased to announce that Pro­fes­sor Manos Mavrikakis has been select­ed for the 2009 Paul H. Emmett Award in Fun­da­men­tal Catal­y­sis. The award con­sists of a plaque and a prize. The pur­pose of the Award is to rec­og­nize and encour­age indi­vid­ual con­tri­bu­tions (under the age of 46) in the field of catal­y­sis with empha­sis on dis­cov­ery and under­stand­ing of cat­alyt­ic phe­nom­e­na, pro­pos­al of cat­alyt­ic reac­tion mech­a­nisms and iden­ti­fi­ca­tion of and descrip­tion of cat­alyt­ic sites and species.

Since 1999 Manos has been with the Depart­ment of Chem­i­cal & Bio­log­i­cal Engi­neer­ing, Uni­ver­si­ty of Wis­con­sin — Madi­son. Manos is one of the world lead­ers in the area of com­pu­ta­tion­al chem­istry in catal­y­sis. He has also served as Vis­it­ing Pro­fes­sor, Depart­ment of Chem­i­cal Engi­neer­ing, Tech­ni­cal Uni­ver­si­ty of Den­mark, Lyn­g­by, Den­mark. The pri­ma­ry research focus of Manos’ group is the fun­da­men­tal under­stand­ing of sur­face reac­tiv­i­ty, using state-of-the-art first-prin­ci­ples meth­ods, and exten­sive­ly col­lab­o­rat­ing with exper­i­men­tal experts. Manos has coau­thored more than 80 orig­i­nal pub­li­ca­tions. He is a mem­ber of the edi­to­r­i­al board of Sur­face Sci­ence and of the Annu­al Review of Chem­i­cal & Bio­mol­e­c­u­lar Engi­neer­ing. Dr. Mavrikakis has pio­neered the use of Den­si­ty Func­tion­al The­o­ry (DFT) meth­ods in the screen­ing of pure and alloy met­al cat­a­lysts to dis­cov­er which met­als or alloys have poten­tial to yield cat­a­lysts of improved activ­i­ty and/or selec­tiv­i­ty. Manos has been unique in hav­ing used the­o­ret­i­cal meth­ods to find new, inter­est­ing class­es of sys­tems and site-nanos­truc­tures. Key to his suc­cess here was the use of fun­da­men­tal prin­ci­ples con­cern­ing the rela­tion­ships between the ener­get­ics of cer­tain key inter­me­di­ates and the acti­va­tion bar­ri­ers for the rate-con­trol­ling steps to make this screen­ing pro­ce­dure faster.

In par­tic­u­lar, Manos demon­strat­ed that pos­si­bil­i­ty by iden­ti­fy­ing bimetal­lic alloys which bind atom­ic H as weak­ly as the noble met­als (Cu, Au), but are able to break the H‑H bond in H2 more eas­i­ly than noble met­als. Such Near-Sur­face-Alloy (NSA) mate­ri­als are ide­al for low tem­per­a­ture, high­ly selec­tive, H‑transfer reac­tions (e.g., in phar­ma­ceu­ti­cal pro­duc­tion), and ener­gy relat­ed cat­alyt­ic appli­ca­tions. Also, Manos’s group sys­tem­at­i­cal­ly stud­ied Oxy­gen Reduc­tion Reac­tion (ORR) on a num­ber of late tran­si­tion met­als, includ­ing bimetal­lic and ternary alloys of Pt. The result of that work was the con­struc­tion of sta­ble, ternary NSAs, which con­tain much less Pt, and are up to a fac­tor of four more active than pure Pt ORR elec­tro­cat­a­lysts. Manos also has dis­cov­ered many inter­est­ing aspects of cat­alyt­ic reac­tion mech­a­nisms that have inspired the field. In par­tic­u­lar, very recent­ly Manos’ group has pro­posed a nov­el low-tem­per­a­ture reac­tion mech­a­nism for the pref­er­en­tial oxi­da­tion of CO in the pres­ence of H2, which explains the room-tem­per­a­ture reac­tiv­i­ty of Ru-Pt core-shell nanopar­ti­cles. The spe­cif­ic nanopar­ti­cles were iden­ti­fied by Manos’ group from first-prin­ci­ples as very active and selec­tive PROX cat­a­lysts, and those pre­dic­tions were con­firmed upon syn­the­sis and cat­alyt­ic test­ing of the Ru-core Pt-shell nanopar­ti­cles. Manos also fol­lowed up his detailed gas-phase methanol decom­po­si­tion DFT work with exper­i­ments and micro­ki­net­ic mod­el­ing, to show that one can accu­rate­ly pre­dict exper­i­men­tal reac­tion rates direct­ly from first prin­ci­ples. In the area of water gas shift catal­y­sis, his efforts have led to a com­plete­ly new water-gas shift reac­tion mech­a­nism involv­ing car­boxyl species on Cu, Pt, and Au sur­faces, which is quite gen­er­al and may be applic­a­ble to oth­er low tem­per­a­ture water-gas shift cat­a­lysts. Impor­tant­ly, this mech­a­nism is shown to be oper­a­tional under real­is­tic indus­tri­al water-gas shift con­di­tions.

Manos will give a ple­nary lec­ture and be rec­og­nized at the 2009 North Amer­i­can Catal­y­sis Soci­ety meet­ing in San Fran­cis­co.

The Paul H. Emmett Award in Fun­da­men­tal Catal­y­sis is spon­sored by the Davi­son Chem­i­cal Divi­sion of W.R. Grace and Com­pa­ny. It is admin­is­tered by The North Amer­i­can Catal­y­sis Soci­ety and is award­ed bien­ni­al­ly in odd num­bered years. More infor­ma­tion on this award, the awards process, and pre­vi­ous awardees can be found inside the Awards fold­er on the NACS home page: www.nacatsoc.org
 
John Armor
 
Award Cita­tion: For his elu­ci­da­tion of the fun­da­men­tal aspects of the sur­face chem­istry for well-estab­lished cat­alyt­ic process­es, and his lead­er­ship in the use of Den­si­ty func­tion­al The­o­ry to set direc­tions for future research in the search for new cat­a­lysts and new cat­alyt­ic process­es.