Alex Bell awarded 2003 Robert Burwell Lectureship in Catalysis

Professor Alexis T. Bell has been awarded the 2003 Robert Burwell Lectureship in Catalysis by the North American Catalysis Society. The Lectureship is sponsored by Johnson Matthey PLC’s Catalysts and Chemicals Division and is given in recognition of substantial contributions to one or more areas in the field of catalysis with emphasis on discovery and understanding of catalytic phenomena, catalytic reaction mechanisms and identification and description of catalytic sites and species. His research activities have led to more than 400 publications in the most prestigious journals in catalysis, chemistry and chemical engineering. Over many years he has applied cutting-edge spectroscopy and theory to study surfaces before and after catalytic reactions.

His nominators offered some of the following remarks. His earlier work with Professor Doros Theodorou pioneered the application of statistical mechanics and molecular dynamics for predicting the adsorption and diffusion of molecules in zeolites. This represented one of the first quantitative applications of theoretical methods to systems of direct catalytic relevance. Later his work with Professor Arup Chakraborty succeeded in using quantum mechanical calculations to determine the siting and stability of metal cations exchanged into zeolites. In the area of Fischer-Tropsch synthesis, his elegant use of in situ infrared methods, surface science techniques, and isotopic switch methods led to a mechanistic picture of “unprecedented clarity and relevance.” Rate constants for elementary steps and the identity and reactivity of specific adsorbed intermediates were measured and ultimately used to elucidate the underlying structure-function relations for chain growth as well as the operative basis for widely reported strong meta-supported interactions. His studies have led to demonstration of a novel bifunctional mechanism for methanol synthesis and leads to strong effects of Lewis acidity and basicity of ZrO2 on activity and selectivity. He has also made significant contributions in the area of zeolite catalysis by elucidating the mechanism of both the synthesis and function of these heterogeneous catalysts.

Together with Professor Clay Radke, the application of NMR methods led to the direct observation of the structure-directing role of organic and inorganic cations during synthesis and to a clear mechanistic picture of their self-assembly in complex solutions and gels. A combination of kinetic, infrared, isotopic and theoretical studies also led to a clearer mechanistic and structural picture of the nature of exchanged cations in zeolites and their involvement in forming and stabilizing reactive intermediates in the reduction of NO by hydrocarbons. In the area of metal oxides, Alex pioneered the use of Raman spectroscopy for the structural characterization of dispersed structures. His applications of these methods to the characterization of oxidative dehydrogenation catalysts led to specific assignments of site reactivity and to a comprehensive picture of the mechanism and site requirements for desired and undesired reactions of alkanes on dispersed oxides. More recently, working in collaboration with Professor Enrique Iglesia, he has also explored the use of in situ UV-visible and X-ray absorption spectroscopy in measuring the number of active sites and reduced centers during alkane oxidation reactions. Throughout all this work, Alex has repeatedly demonstrated a natural talent that allows him to translate his research on catalytic phenomena, catalytic reaction mechanisms, and the identification and description of catalytic sites for a wide range of chemistries into understandable terms for his audience.

The lectureship comes with an honorarium and travel stipend that will allow him to visit many of the local clubs of the North American Catalysis Society in order to stimulate both young and old minds to the marvels of catalysis.
John N. Armor

Houdry Award to Avelino Corma

The 2003 Eugene J. Houdry Award in Applied Catalysis to Professor Avelino Corma Canos of the Technical University of Valencia, Spain. The award is sponsored by Süd-Chemie, Inc. The purpose of the Award is to recognize and encourage individual contributions in the field of catalysis with emphasis on the development of new and improved catalysts and processes representing outstanding advances in their useful application.

Professor Corma is widely recognized as a prolific and versatile contributor to the science and technology of heterogeneous catalysis. In particular, he has participated in the discovery of new catalysts for the isomerization of light, straight-run naphtha now in commercial use, others for bottoms upgrading in FCC units, a catalyst for a commercial process for the selective epoxidation of propylene, the development of weakly basic solid catalysts for selective isomerization of alpha olefins, and the commercialization of catalysts for the isomerization of beta pinene. His nominators commented: a set of catalyst compositions disclosed in a patent for the isomerization of light, straight-run naphtha (US #5,057,471) is in current use in ten commercial units. These catalysts are based on H-mordenite materials with very low aluminum content and they show unprecedented sulfur resistance. His group is also credited with the discovery and use of Al-containing sepiolite materials as additives for bottoms upgrading in FCC units. Following successful scale-up activities, these catalysts are in current use in at least one FCC refinery unit.

A collaboration between the Corma group and Sumitomo Corporation has led to a commercial process for the selective epoxidation of propylene to propylene oxide using cumene hydroperoxide. The use of a zeolitic material with large pores and a Si-O-Ti framework leads to unprecedented selectivity and stability. A commercial reactor using this technology is currently in start-up in Japan.

A joint project with Tagasako Corporation and Acedesa led to the commercialization of heterogeneous catalysts for the isomerization of beta pinene to alpha pinene, as part of an overall process for the synthesis of a family of sandalwood-type fragrances.
Professor Corma’s group has also pioneered the use of automated micro-activity test units, whose design was patented and licensed, and about 30 of these units have been placed in service.

Emmett Award to Francisco Zaera

The Paul H. Emmett Award in Fundamental Catalysis to Professor Francisco Zaera of the University of California at Riverside, USA. The award is sponsored by the Davison Chemical Division of W.R. Grace and Company. The Award is intended to recognize and encourage individual contributions (under the age of 45) in the field of catalysis with emphasis on discovery and understanding of catalytic phenomena, proposal of catalytic reaction mechanisms and identification of and description of catalytic sites and species.

Professor Zaera’s main interests lie with the study of mechanisms of surface reactions by using modern surface-sensitive techniques. He is noted for bridging the knowledge on surface reactions with that of organometallic systems and for his extension of kinetic theories to reactions on surfaces. His nominators commented that he has placed particular emphasis on making a connection between the atomic details of surface reactions and heterogeneous catalytic processes. While most surface kinetic concepts have been recognized for some time, Francisco is credited with quantifying the kinetic consequences of these effects by a variety of surface science techniques to rationalize the rates observed in model systems and correlate them with practical heterogeneous catalysis rates.

He has been given credit for unequivocally establishing that most hydrocarbon processing catalysts are covered with a carbonaceous layer during the catalytic process. By performing isotope labeling experiments and using vibrational spectroscopy and molecular beam studies, Professor Zaera determined that those deposits are not direct intermediates in hydrogenation-dehydrogenation steps, but rather an play an indirect role by tempering the high activity of the metal surfaces and providing a reservoir for the surface hydrogen. He is also credited with establishing the prominence of hydride and reductive elimination steps as the main conversion pathways for alkyl fragments on transition metals. He has also shown how specific small changes in relative rates among competing reactions can account for vast differences in selectivity observed among some Group VIII metal centers.

Canadian Catalysis Awards to W. Piers and H. Kung

The Catalysis Division of the Chemical Institute of Canada announced that Professor Warren Piers, Department of Chemistry, University of Calgary has been awarded the 2002 Canadian Catalysis Lectureship Award. Professor Piers is noted for his work in synthetic organometallic chemistry, including the development of new olefin polymerization catalysts and co-catalysts, and the development of new catalytic processes using early transition metal organometallic compounds.

In addition, Professor Harold Kung, Department of Chemical Engineering, Northwestern University (Evanstown, Ill) has been awarded the 2002 Cross-Canada Catalysis Lectureship Award. Professor Kung is recognized for his work in the selective oxidation of light alkanes, NOx reduction in an oxidizing atmosphere, supported Au catalysis and hydrocarbon cracking over acidic zeolites.

Steve Ittel receives 2002 Catalysis Club of Philadelphia Award

Dr. Steven D. Ittel of DuPont was awarded the 2002 Catalysis Club of Philadelphia Award during the organization’s annual Spring Symposium, held May 23, 2002 at the University of Delaware. Dr. Ittel is highly regarded for his exploratory research and technology development in the field of organometallic-complex catalysis.

Gabor Somorjai named University Professor and receives National Metal of Science

Gabor Somorjai, professor of chemistry at the University of California, Berkeley (USA) has been named University Professor. He becomes only the 23rd individual in the entire University of California system to be honored with this prestigious title. Previous holders of this distinction include Glenn T. Seaborg and Melvin Calvin.

Gabor was also among a group of 15 recipients of the US National Metal of Science. This is the highest award for science and is presented by President Bush. As Rita Colwell, director of the National Science Foundation, said in 1998 “These are superstars in their respective fields. They’ve contributed a lifetime of stunning discoveries. We can only recognize them once with a science medal, but we applaud them daily for their continual contributions to humankind, to the reservoir of scientific knowledge and for the impact they have on the students they mentor and educate along the way.”

2002 Catalysis Award of the Canadian Institute for Chemistry to Professor Michael Baird

CANADIAN CATALYSIS AWARD: The 2002 Catalysis Award of the Canadian Institute for Chemistry has been given to Professor Michael Baird of Queen’s University, Kingston Ontario. Sponsored by the Canadian Catalysis Foundation, this prize is given in even-numbered years to a researcher who has contributed to the advancement of catalysis in Canada. Michael Baird is an organometallic chemist who combines research in fundamental organo transition metal chemistry with applications to organic syntheses and catalysis. Most recently, Professor Baird has been exploring the utilization of metallocene-like organometallic compounds as homogeneous catalysts/initiators for olefin polymerization, which show interesting solvent-specifc stereochemical behavior, and a wide range of polymerization pathways for various monomer systems.

John Monnier awarded F. G. Ciapetta Lectureship in Catalysis

Dr. John Monnier [] of Eastman Chemical Company, Kingsport, TN has been awarded the 2002 F.G. Ciapetta Lectureship in Catalysis. This is one of 4 major awards for technical excellence the North American Catalysis Society provides every 2 years, and this award is cosponsored by the Davison Chemical Division of W.R. Grace & Company and The North American Catalysis Society. Dr. Monnier is being recognized for his pioneering work in catalysis research and process development on the epoxidation of butadiene and other non-allylic olefins with supported silver catalysts. This research has led to the identification of over 100 new applications for epoxybutene and its derivatives. In 1996, Eastman Chemical brought on line a 3 million lbs/yr plant to supply 5 new epoxybutene derivatives to the pharmaceutical and agricultural markets.

The Society administers this Lectureship. It is awarded biennially in even numbered years, and the Award consists of a plaque and an honorarium of $5,000. An additional $4,500 is available from the Society to cover traveling expenses. The honorarium is provided completely by Davison. Dr. Monnier is invited to (1) visit and lecture to each of the affiliated Clubs/Societies with which mutually satisfactory arrangements can be made and (2) prepare a review paper(s) for publication covering these Lectures.

Israel Wachs receives 2001 Clean Air Excellence Award

Professor Israel Wachs of Lehigh University’s Chemical Engineering Department has received a 2001 Clean Air Excellence Award. The EPA 2001 Clean Air Excellence Awards program honors outstanding, innovative efforts that help to make progress in achieving cleaner air. The research, sponsored by Georgia-Pacific Corp., has provided the pulp industry with a potentially profitable and innovative third alternative method of processing their waste gases. Using a new process and catalyst developed at Lehigh, the methyl alcohol and mercaptans can be converted to formaldehyde, a building-block chemical used for the adhesives, which find application in the plywood industry. [See or N. Moretti’s article in Pollution Engineering, Jan. 2002, pp 24-28]. The waste gases are simply processed through a plant, which is similar in design to a conventional formaldehyde plant that utilizes commercial-grade methyl alcohol as a feed material. The novel environmentally benign process was conceptually developed and experimentally proven on a laboratory scale (see US Patent Nos. 5,907,066 and 6,198,005 B1 to I.E. Wachs/Lehigh University). The pilot plant studies were performed at Georgia-Pacific’s Brunswick, GA pulp mill on the real industrial waste streams.

The Clean Air Excellence Awards [] Program, sponsored by the U.S. Environmental Protection Agency’s (EPA’s) Office of Air and Radiation, was established in 2000 at the recommendation of the Clean Air Act Advisory Committee (CAAAC). The CAAAC is a policy-level advisory group to the EPA. The Awards Program annually recognizes and honors outstanding, innovative efforts that help to make progress in achieving cleaner air.

The award criteria are: (1) the technology is commercially viable and can be widely applied, (2) the technology is cost-effective relative to other air pollution technologies that already exist and (3) the technology is developed at the prototype stage or beyond. In 2000, XononTM Cool Combustion System – Catalytica Combustion Systems, Inc. received an award for developing the XononTM Cool Combustion system to reduce nitrogen oxides by 90 percent. XononTM prevents the formation of nitrogen oxides before they can form and has been applied in Santa Clara, California in an industrial gas turbine.

Multiple ACS Awards for Catalysis Research

Once again, several of the 2002 ACS awards were given to those working in catalysis.

ACS Award for Creative Research in Homogeneous or Heterogeneous Catalysis sponsored by Shell Oil Foundation, Jack H. Lunsford, Texas A&M University. …for innovative applications of spectroscopic techniques to the characterization of solid catalysts and to the elucidation of catalytic reaction mechanisms.

ACS Award in Industrial Chemistry, Bipin V. Vora, UOP, LLC, Des Plaines, IL. …for contributions to breakthrough technologies in key petrochemical industries and for your leadership in two major commercial developments: new selective process for the production of propylene and isobutylene by catalytic dehydrogenation and new catalytic processes critical for the production of linear alkyl benzene based detergents.

Arthur W. Adamson Award for Distinguished Service in the Advancement of Surface Chemistry sponsored by Occidental Petroleum Corporation, D. Wayne Goodman,Texas A&M University. …for his innovative research that has helped bridge the gap between surface science and catalysis, and for his leadership role in a large number of councils that have significantly influenced the direction of surface chemistry.

Earle B. Barnes Award for Leadership in Chemical Research Management sponsored by The Dow Chemical Company, to Kurt W. Swogger, The Dow Chemical Company, Polyolefins and Elastomers Research and Development, Freeport, TX. …for his leadership in the development and commercialization of Dow INSITE*Technology which profoundly changed the course and growth of the global polyolefin industry.

Arthur C. Cope Award sponsored by the Arthur C. Cope Fund, Robert H. Grubbs, California Institute of Technology. …for his invention of new transition metal catalysts that have made a major impact on the fields of organic chemistry and materials science.

Arthur C. Cope Scholar Awards sponsored by the Arthur C. Cope Fund, Xumu Zhang, The Pennsylvania State University; …for his invention of a toolbox of chiral ligands and his development of homogeneous catalysts that enable practical syntheses of many chiral molecules, especially ones having biological significance.

E. V. Murphree Award in Industrial and Engineering Chemistry sponsored by ExxonMobil Research and Engineering Company and ExxonMobil Chemical Company, George R. Lester, Allied Signal, Inc. (retired). …for his extraordinary contributions to catalytic science and technology and especially for his innovations in environmental control catalysts for automobiles, turbine engines and work places.

George A. Olah Award in Hydrocarbon or Petroleum Chemistry sponsored by the George A. Olah Endowment, Gary B. McVicker, ExxonMobil Research and Engineering Company. …for his many contributions to the fundamental understanding of the catalytic transformations of petroleum derived hydrocarbons.